EXTRUSION TECHNOLOGY
Extruders and extrusion lines
EXTRUSION TECHNOLOGY

With experience and passion

When screw pumps for pumping viscous masses were further developed at Leistritz nearly 80 years ago, it was barely imaginable that the present high-performance extruders would be the result. At the headquarters in Nuremberg/Germany, we conceive, design and produce individually laid out, co-rotating twin screw extruders and turn-key extrusion lines for the plastics and pharmaceutical industry. This, in combination with sophisticated process technology know-how, guarantees the high quality of our extruder lines. The heart of our ZSE MAXX extruders – the screws and barrels – are produced in the German Leistritz plants. The basis for this is the implementation of modern technologies, but particularly the nearly 200 employees worldwide – a dedicated team that stands behind the product.

With branches in the USA, China and Singapore, sales offices in Italy and France and agents in all key markets, we have a global presence. Our customers profit from short communication paths and trusting professional cooperation.

TWIN SCREW EXTRUDERS

Flexible and efficient

The alpha and omega for producing high-quality products from plastics or pharmaceuticals is a very good process technology. A core component for this is the co-rotating twin screw extruder. Due to its modular design, it is extremely flexible. Leistritz has established itself as one of the worldwide leading producers of twin screw extruders. It is only possible to offer a fully developed product range through constant innovation and an open ear for the requirements of the users. For plastics processing, Leistritz offers the ideal combination of very high specific torque (15 Nm/cm³) and high volume (OD/ID = 1.66) with the ZSE MAXX series.

AT A GLANCE:

- usable for a multitude of processing applications
- modular system: screws and barrels individually configurable
- self-cleaning screw geometry
- high productivity
- continuous mode of operation – constant quality
- optimum energy input
PLASTICS PROCESSING

Compounding: Filling. Reinforcing. Improving.

The processing of plastics is one of the prime disciplines of Leistritz twin screw extruders. Typical compounding tasks are, among others, the reinforcement of polymers, improvement of their dimensional stability and tensile strength, impact-resistance modification of thermoplastic materials, production of polymer blends. Diverse incorporation options for filler and reinforcement materials into the polymer matrix are possible and lead to new material properties, which are used in a multitude of applications. Leistritz ZSE MAXX twin screw extruders are an optimum choice for these.

RESULTS WITH ZSE MAXX:

- Enormous throughput increase with constant quality
- Energy saving of up to 20% due to higher utilization of drive power
- Maximum throughputs, even with processes that are shear-sensitive

Application example: Incorporation of glass fibers (40%) into polycarbonate (60%)

Particularly with temperature-sensitive processes, where gentle energy input is necessary, the combination of high volume (OD/ID = 1.66) and high torque (15.0 Nm/cm³) of the Leistritz ZSE MAXX technology can facilitate disproportionately high throughputs. Due to the fact that the polycarbonate, which is sensitive to shearing, has not yet reached the thermal limit in this process, the process can run at a higher screw speed with the use of a ZSE MAXX extruder. Due to the optimized energy input, the process can be run at higher speeds without causing thermal damage to the carrier / matrix polymer.

» The compounding of thermoplastics is one of the main application areas of Leistritz twin screw extruders.

More information can be found in the "Compounding" brochure.

MASTERBATCH PRODUCTION

The grain of difference

Plastic pellets with a share of up to 85 weight-% of pigments, additives or fillers, are called masterbatches. The main component of a masterbatch line is the co-rotating twin screw extruder: it takes over the functions of homogenization and dispersion (splitting of the agglomerates), wetting and distribution of the pigments/additives/fillers in the polymer matrix.

The production of masterbatches in the extrusion process depends particularly on the optimum incorporation of the additives into the polymer matrix. The fine, powdery base material often tends to agglomerate and therefore is difficult to process. In later work steps, such as injection molding, film or fiber production, these are added to the raw polymer for coloring or for targeted modification of other properties.

RESULTS WITH ZSE MAXX:

- Very high quality of the produced masterbatch
- Outstanding color strength (+ 6-8%)
- Significantly less agglomeration
- Good wetting and less compacting in the melting zone

Application example: Production of a color masterbatch with Cromophthal Red G

The production has been compared here with two different Leistritz extruder series: a ZSE 27 MAXX (OD/ID = 1.66) and the predecessor model ZSE 27 HP (OD/ID = 1.5)

More information can be found in the "Masterbatch" brochure.

DIRECT EXTRUSION

Efficient and gentle processing

Direct extrusion or inline compounding offers the option of producing extrusion products particularly efficiently by combining various process steps. The intermediate step of pellet production is omitted and the extruder is used for material processing and shaping of the extrudate. By using according downstream equipment, films, sheets, injection-molded parts or pipes can be directly produced. With direct extrusion, the product is spared from a second energy stress, which, in addition to the economic benefit, also often results in improved mechanical and optical properties of the end product.

![Example of a PET film line: two ZSE MAXX twin screw extruders as the main component for recycling of virgin materials, as well as coproduct extruder for virgin materials.](image)

THE BENEFITS:

- Pelletizing step is omitted
- Single stressing of the polymer through temperature and shear
- Valuable formulation know-how stays at one source
- Flexible production and product planning possible
- Process facilitates energy savings

In the past three decades, extrusion technology has become an interesting alternative for the development of pharmaceuticals such as pellets, tablets or transdermal systems. Pharma extrusion can generally be sub-categorized into hot melt extrusion and wet extrusion. In wet extrusion, the powdered components, such as active ingredients and auxiliary substances, are mixed while adding a pelletizing fluid and are discharged via a die as strands or in an open form. Subsequently, they are shaped into pellets.

In contrast, with melt extrusion, the carrier substance (polymer) is processed above the glass transition temperature in order to evenly disperse the active ingredient in the polymer. By subsequently cooling down the melt, a „solid dispersion“ is generated with the improved release of active ingredients. This can take place through a chill roll or a cooling conveyor belt. Alternatively, the melt can be shaped into pellets with a defined mass and shape via die face pelletizing.

PHARMA EXTRUSION

Continuous processing of pharmaceutical masses

With its extrusion lines and integrated containment solutions in GMP design, Leistritz is the market and innovation leader in the demanding field of pharmaceutical extrusion.

In the past three decades, extrusion technology has become an interesting alternative for the development of pharmaceuticals such as pellets, tablets or transdermal systems. Pharma extrusion can generally be sub-categorized into hot melt extrusion and wet extrusion. In wet extrusion, the powdered components, such as active ingredients and auxiliary substances, are mixed while adding a pelletizing fluid and are discharged via a die as strands or in an open form. Subsequently, they are shaped into pellets.

In contrast, with melt extrusion, the carrier substance (polymer) is processed above the glass transition temperature in order to evenly disperse the active ingredient in the polymer. By subsequently cooling down the melt, a „solid dispersion“ is generated with the improved release of active ingredients. This can take place through a chill roll or a cooling conveyor belt. Alternatively, the melt can be shaped into pellets with a defined mass and shape via die face pelletizing.

THE EXTRUSION PROCESS IS SUITABLE FOR:

- Integrating an API into a matrix (e.g. wax, cellulose, starch...)
- Pelletizing of a tablet premix
- Compounding of antibacterial TPU premixes
- Removing volatile components from a formulation
- Coating for transdermal applications
- Implementation of various dosage forms
- Reactive extrusion

![The pharma extruders in GMP design from Leistritz fulfill strict clean room conditions.](image)

More information can be found in the "Pharmaceutical Extrusion" brochure.
AUTOMATION TECHNOLOGY

All the threads come together in the control unit.

Today more than ever! This is where you can support our control solutions in the digital age! Since Industry 4.0, Leistritz control systems have been linked up with a wide range of applications. For example, due to digitalization, process data are recorded both locally and globally.

You also have the option to connect the system directly with the infrastructure. Both you and our Leistritz technicians can remotely access the system control via Smart Monitoring. By means of Leistritz Smart Services, you have your data handy at any time, anywhere, in digital form and on a mobile device, so you can act flexibly and in real-time.

The development environment of the Leistritz control unit is based on a state-of-the-art programming environment and the very latest TIA version (Totally Integrated Automation).

Your benefits:

➤ an even faster remote maintenance service
➤ the option of using OPC Unified Architecture (OPC UA) in the future, and
➤ less downtime when the control system is being modified.

In the future, OPC Unified Architecture (OPC UA) will forge a link between the IP-based IT world and your Leistritz extrusion line. Interfaces, gateways and the accompanying loss of information will soon be a thing of the past, as all the data of the production process will be transferred via a single protocol – whether inside a machine, between machines, or between a machine and a database in the cloud. Furthermore, Leistritz is an active member of the VDMA working group and is involved in defining the standard for extruder-specific interfaces.

SERVICE FEATURES:

➤ electrical planning of the complete extrusion line
➤ integration of all upstream and downstream line components
➤ optimum control and monitoring of all extruder components
➤ use of Siemens hardware guarantees a huge support network
➤ worldwide spare parts service
➤ remote servicing
➤ melt pump control system
➤ integrated sensor technology (color measurement, rheometer and more)

The design of the screw geometry matches exactly with the barrel design. Leistritz offers barrels with various openings and inserts for material feeding, degassing and venting for the optimum interaction with the extruder screws. Depending on the size of the machine, these are either connected via flanges or with internal tie rods.

More information can be found in the "ZSE MAXX" brochure.

Modular screw and barrel system

Screws, shafts and barrels are the heart of an extruder. Leistritz offers an extensive variety of screw geometries for an almost endless number of variations. Generally, there are conveying, kneading and mixing elements. The competence of the Leistritz processing experts enables them to create an optimum screw design for the respective application.
These features make the ZSE MAXX extruders so successful on the market:

- **maxXX volume**: increased free volume in the screw (OD/ID = 1.66)
- **maxXX shaft**: maximum power transmission due to patented shaft-hub connection
- **maxXX cooling**: up to 30% improved cooling by means of optimized flow of the liquid coolant through the barrel
- **maxXX torque**: very high specific torque (up to 15.0 Nm/cm³)

An example of a ZSE 87 MAXX extruder is shown below.

PHARMA EXTRUDERS

Leistritz offers a series of co-rotating extruders and relevant auxiliary equipment in GMP design (Good Manufacturing Practice) for the specific requirements of the pharmaceutical industry. Extruders for pharmaceutical applications are not only distinguished by purely visible features, such as the usage of stainless steel. This machine generation provides everything that complies with the GMP requirements of the pharmaceutical industry including special fittings, material combinations, surface textures and increased documentation for qualification.

More information can be found in the brochure "Pharmaceutical Extrusion".

Screw Diameter (mm) & Torque (Nm)

<table>
<thead>
<tr>
<th>Type</th>
<th>Screw Diameter (mm)</th>
<th>Total Torque (Nm/cm³) up to Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>18.5</td>
<td>11.0</td>
</tr>
<tr>
<td>27</td>
<td>28.3</td>
<td>12.5</td>
</tr>
<tr>
<td>35</td>
<td>35.1</td>
<td>15.0</td>
</tr>
<tr>
<td>40</td>
<td>41.4</td>
<td>15.0</td>
</tr>
<tr>
<td>50</td>
<td>51.0</td>
<td>15.0</td>
</tr>
<tr>
<td>60</td>
<td>61.6</td>
<td>15.0</td>
</tr>
<tr>
<td>75</td>
<td>77.0</td>
<td>15.0</td>
</tr>
<tr>
<td>87</td>
<td>89.4</td>
<td>15.0</td>
</tr>
<tr>
<td>110</td>
<td>113.1</td>
<td>15.0</td>
</tr>
<tr>
<td>135</td>
<td>138.7</td>
<td>15.0</td>
</tr>
<tr>
<td>160</td>
<td>159.9</td>
<td>15.0</td>
</tr>
<tr>
<td>180</td>
<td>178.8</td>
<td>15.0</td>
</tr>
<tr>
<td>260</td>
<td>258.0</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Leistritz – pioneer in pharmaceutical extrusion. Since the mid 1980’s we have been delivering extruders to the pharmaceutical industry.
Extrusion Technology

Engineered solutions that are tailor-made for you:

Example of a major project: 3D visualization of a compounding line for stabilizing PP powder directly after polymerisation

We are a system supplier, guaranteeing high process engineering expertise, holistic solutions, and partnership-based cooperation.

When it comes to turnkey solutions, we act in a dedicated manner as advisors, planners, site managers, interface coordinators, and trainers. Our task is to assist our customers during every phase of the project as a reliable partner – from conception and development right up to realization and commissioning.

The twin screw extruders by Leistritz are among the leading machines in the world in the plastics and pharmaceuticals market. They must satisfy the highest production and quality requirements every day.

One of the formulas to stand one’s ground in the tough competition is to work in an efficient and economical manner. Be reassured by our technical support with its decades of experience in dealing with extruders and extrusion lines. Our team is active around the world for you – competent and solution-oriented. They make sure that your technology always functions optimally and the work processes coordinate perfectly with one another.

More information can be found in the "Service" brochure.
RESEARCH & DEVELOPMENT

The global cooperation with institutions, universities and
development partners is an important part of the Leis-
tritz philosophy. Through our research and development
projects, we are working on the future and expanding
our process engineering and machine know-how. Not
only we, but also our customers, profit from this lead in
knowledge.
In the area of research, development and sample produc-
tion, the flexible Leistritz laboratory extruders are in high
demand. They are convincing due to their compact design
requiring only little space. The user gets the flexibility of
an extruder, which can either run in pure laboratory op-
eration, as well as produce small batches. The results that
are achieved with these machines are the key to „scaling
up” to larger production machines.

The ZSE 27 iMAXXX –
the ideal laboratory extruder:
space-saving and efficient!

In-house, with our process labs in Nuremberg
(Germany), Somerville (USA) and Taicang (China),
we offer a production-related environment, in which our
customers can put their product developments to the
test. Processes are tested and optimized here on various
Leistritz extruders. We even use these
resources ourselves in order to work on new trends and
extruder solutions. In the area of research,
development and sample production, flexible
machines with compact designs are required.

Leistritz extruders are used in more than 100 institutes worldwide.

In-house, with our process labs in Nuremberg
(Germany), Somerville (USA) and Taicang (China),
we offer a production-related environment, in which our
customers can put their product developments to the
test. Processes are tested and optimized here on various
Leistritz extruders. We even use these
resources ourselves in order to work on new trends and
extruder solutions. In the area of research,
development and sample production, flexible
machines with compact designs are required.
EXTRUSION TECHNOLOGY

Available for you all over the world

USA
Leistritz Advanced Technologies Corp., Somerville, NJ

GERMANY
Headquarters
Leistritz Extrusionstechnik GmbH, Nuremberg

CHINA
Leistritz Machinery (Taicang) Co., Ltd., Taicang

ITALY
Leistritz Italia Estrusione, Castellanza

FRANCE
Leistritz France Extrusion, Ceyzeriat

SINGAPORE
Leistritz SEA Pte Ltd., Singapore

Leistritz Extrusionstechnik GmbH | Markgrafenstraße 36-39 | 90459 Nuremberg | Germany
T +49 911 4306-0 | extruder@leistritz.com

www.leistritz.com